Treatments, Synthetics, and Simulants

In This Lesson:

• A Bumpy Marriage
• Basic Distinctions
• Diamond Treatments
• Synthetic Diamonds
• Diamond Simulants
• Representation and Disclosure
• Testing and Identification
• Problems and Potentials

A BUMPY MARRIAGE

Like many areas of modern life, jewelry retailing reflects a marriage of nature and technology. It’s sometimes a bumpy relationship, but it’s here to stay.

Treated diamonds, synthetic diamonds, and diamond simulants are good examples. They’re among the increasingly diverse products with which jewelry professionals have to deal. They cause controversy in our industry and challenges in individual business operations. At the same time, they can provide benefits for customers and opportunities for you and your store.

In the diamond industry there’s concern about treatments, synthetics, and simulants. Most of it comes from fear that they will somehow harm consumer confidence in natural diamonds. The fear has so far been unfounded, and there’s no reason to expect serious trouble in the future.

Artificial processes and products are, however, growing in variety, complexity, and availability. As a result, you need to keep your knowledge up-to-date.
There are also questions to answer. If you sell these products, how can you present them accurately and ethically – and also effectively? If you don’t offer them, what should you say to customers who ask about them? In any case, how do you avoid problems from misidentification or deception?

Despite the issues connected with them, treatments, synthetics, and simulants play a positive role in today’s jewelry marketplace. For consumers, they expand the choices of beauty and value. To retailers they offer possibilities for increased sales. Perhaps most importantly, they can help jewelers build trust with their customers.

In this lesson you’ll examine diamond treatments, synthetics, and simulants – products of nature and technology’s bumpy marriage. You’ll also find answers to the questions they raise.

Lesson Objectives

When you have completed this lesson you will be able to:

- Explain to customers what treatments, synthetics, and simulants are.
- Describe common diamond treatments and their effects.
- Present or answer questions about synthetic diamonds and simulants.
- Follow ethical guidelines for representation and disclosure.
- Discuss how artificial processes and products can be identified.
- Understand how these things fit into today’s fine jewelry retailing.
BASIC DISTINCTIONS

Treated diamonds, synthetic diamonds, and diamond simulants are different products that are often confused by consumers. As a professional, you need to be able to explain the differences and provide any additional information a customer needs.

Here are three simple definitions you can share with customers:

- **Treated diamond** – This is a diamond that formed naturally, but underwent some laboratory process to improve its appearance.

- **Synthetic diamond** – A diamond that was made in a laboratory or manufacturing facility. It has essentially the same composition, structure, and properties as a natural diamond, but was produced by technological means.

- **Diamond simulant** – A diamond look-alike. Diamond simulants are NOT diamonds. They only resemble diamonds.

Now let’s take a closer look at each type of product.

DIAMOND TREATMENTS

A large percentage of gems entering the marketplace are now being treated in one way or another. Experts estimate that 3/4 of colored gemstones are treated.

Many colored gems undergo treatment as a matter of routine processing. These include amethyst, aquamarine, citrine, emerald, opal, ruby, sapphire, tanzanite, topaz, tourmaline, and cultured pearls. Many different processes are used on colored gems, and some are centuries old.

Most diamond treatments have been developed within the last 50 years. They’re less prevalent than those for colored gems, but they’re becoming more widespread, varied, and sophisticated.

Diamond treatments can affect clarity or color. Only a few processes are used on a commercial scale. They can be performed in various ways, though, and these variations affect the final results. A single diamond can receive more than one treatment. Synthetic diamonds can be treated as well.
Clarity Treatments

The treatments for diamond clarity are **laser drilling** and **fracture filling**.

- **Laser Drilling** – This treatment is used to lighten dark inclusions. To accomplish this – the way it’s usually done – a high-power laser burns a microscopic channel into the diamond to reach the inclusion. Then a strong acid is injected to bleach the inclusion. The treatment leaves a tiny laser drill hole, which becomes an additional inclusion. The drill hole is often so small that it can’t be seen without magnification. The process therefore improves the diamond’s overall appearance.

- **Fracture Filling** – This treatment makes fractures and cleavages less visible. If a break reaches the diamond’s surface, it can be filled with a glass-like material. The filler resembles diamond in transparency, color, and other properties. The treatment is often performed in a vacuum chamber, so the glass will fill the break completely. As a result, the break may seem to almost disappear.

Laser drilling began in the 1970s, and fracture filling followed in the 1980s. Today both treatments are common. Both are also considered ethical – as long as they’re properly disclosed to the buyer.

One significant difference is that laser drilling is a permanent treatment, while fracture filling may not be. (There’s more about permanence in the “Representation and Disclosure” section of this lesson.)

The effects of fracture filling are regarded as cosmetic. The diamond’s clarity may appear to improve as much as two grades. Its color may appear to improve as well. This is due to the improved transparency that results from the clear filling. The break is still present, however, so the true quality remains the same.
Without removing the filling, there’s no way to grade a fracture filled diamond accurately. For this reason, many trade laboratories won’t issue quality reports on fracture filled diamonds. (Lesson 13 has more about trade laboratories and the services they provide.)

A fracture filled diamond can’t be graded accurately.

Color Treatments

The most frequent treatments affecting diamond color are *irradiation* and *high pressure combined with high temperature*.

- **Irradiation** – Irradiation most often creates fancy color in light yellow or brown diamonds. It can also deepen or intensify other natural colors. There are several irradiation techniques, and they’re often combined with controlled heating. (The heating part of the process is called *annealing*.) The resulting colors include most of those seen in natural diamonds – various shades of yellow, brown, blue, pink, red, green, and orange. Some black diamonds are colored by irradiation.

- **High-pressure high-temperature (HPHT)** – This treatment alters a diamond’s color at the molecular level. The original method removes some or all color from certain types of light brown diamonds. Other versions can color some diamonds pink, blue, yellow, green, or orange. HPHT treatment – or high temperature alone – is also used to color diamonds black. The diamonds chosen for black coloration contain numerous fractures. During the process, the fracture surfaces convert to graphite (another form of carbon), making the diamonds appear completely black.
Current irradiation techniques date from the 1970s. The treatment occurs in nuclear reactors or the devices known as linear particle accelerators. To guard public safety, the US Nuclear Regulatory Commission (NRC) limits the amount of radiation a diamond can receive and specifically defines the type of radiation that can be used on diamonds. Treatment facilities and firms that deal in treated diamonds also take steps to eliminate potential problems. As a result, you can assure customers that irradiated diamonds pose no health concerns.

Commercial HPHT treatments were first announced in 1999. These marked a new dimension in treatment. Never before had an artificial process been able to remove color from diamonds on a scale that was suitable for production.

Today irradiation is commonplace, and HPHT treatments are widely available. A growing number of colored diamonds are HPHT treated. Diamonds that have had their color lightened or removed by HPHT treatment are relatively rare. That’s because this version of the process works on only about 1-2% of diamonds – just certain types of light brown diamonds.

Like laser drilling and fracture filling, irradiation and HPHT treatment are considered ethical, provided that they’re disclosed.
COATING

The process known as coating is a fairly common treatment for colored gemstones. It’s rare for diamonds – and with them, it’s considered deceptive.

When a gem is coated, a thin layer of some substance is applied to its surface. The goal is usually to improve or change the gem’s color.

Today coatings are most often seen on colored gemstone imitations. For example, colorless quartz may be coated with green plastic to imitate emerald. Coatings can also create distinctive gemstone products. Colorless quartz and topaz are sometimes coated with a thin film of gold or some other metal to give them an iridescent sheen. (Iridescence is the rainbow effect you might see on the surface of a soap bubble.)

A coating can change the appearance of a diamond’s color – but not the actual color. The diamond’s girdle or pavilion might be partly covered with a thin layer of colored plastic or chemicals like those used on camera lenses. A carefully placed spot of ink, paint, or even fingernail polish can also do the trick.

The coating often mimics a fancy color. However, a blue coating on a diamond with a light yellow tint can make the diamond look near colorless. That’s because the blue and yellow cancel each other optically.

Coatings on colored gemstones are considered ethical if they’re disclosed. No matter how it’s done or what the effect, coating a diamond is regarded as fraudulent. Since a coating prevents the diamond from being graded accurately, most trade laboratories won’t issue quality reports on coated diamonds.
SYNTHETIC DIAMONDS

Shortly before 1800, scientists proved that diamond is a crystal form of carbon. Soon after that, they began trying to produce diamonds by artificial means.

Initial success didn’t come until the 1950s. Even then the resulting product wasn’t gem quality. It was still a major breakthrough, however.

More than 100 tons of industrial grade synthetic diamonds are now produced every year. These are used primarily for abrasives and cutting tools in mining, construction, and manufacturing.

Gem quality diamonds were first synthesized around 1970. To mark this achievement, some of the earliest specimens were cut and polished as gemstones. At that time, producing synthetic diamonds of gem quality was extremely expensive.

Research and development continued, and in 1985 commercial production of gem quality synthetic diamonds began. At first, these were used in science, technology, and industry, not jewelry.

In the 1990s synthetic gem diamonds began to appear on the jewelry market. Since then – in the 2000s and 2010s – the supply has increased steadily. It has also diversified, with expanded color choices, larger carat weights, and improved quality. Quantities are still very limited compared to the output of natural diamonds, but the supply is certain to grow in the future.

Most synthetic gem diamonds produced for jewelry today are fancy colors. Various shades of yellow and brown are most abundant. Other colors include pink, blue, orange, and red. Near colorless (or “white”) synthetic gem diamonds are still relatively rare, but their availability is increasing.
Some diamond and jewelry professionals worry that synthetic gem diamonds will hurt demand for natural diamonds, but most experts believe they’ll find a special market niche of their own. This has already occurred with synthetic versions of emerald, ruby, sapphire, and other gems.

Meanwhile, consumers seem to be ready – even eager – for this new product. Media reports on synthetic diamonds often draw floods of inquiries by viewers or readers who want to own these marvels of science and technology.

DIAMOND SIMULANTS

Treated and synthetic diamonds are modern products. Diamond simulants have been around for a long time.

Some diamond simulants are natural minerals. For example, colorless sapphire and quartz were used as diamond simulants for centuries. Both are still popular today, but mainly as alternative colorless gems rather than as diamond simulants.

Another natural simulant is colorless zircon. Zircon is usually yellow, brown, or green in its original state. The colorless variety is produced by heat treatment, and it became commercially available around 1900. It enjoyed a decade or two of popularity, and many people still equate the word “zircon” with “imitation diamond.”
The oldest human-made diamond simulant is glass, which has been used for this purpose since the 1500s. Colorless synthetic sapphire and synthetic spinel appeared in the early 1900s, and a number of artificial simulants followed during the rest of that century. Today, glass, synthetic sapphire, and synthetic spinel are by far the most common diamond simulants in terms of volume.

For many years, synthetic cubic zirconia (CZ) was regarded as the best diamond simulant from the standpoint of appearance and other characteristics. It’s now available in many colors. Besides being used as a diamond simulant, CZ is often marketed as a laboratory-created gem in its own right.

(It’s important to note that CZ and zircon are not related as minerals. Both contain the element zirconium, but that’s all they have in common.)

The most recent gem material that could be considered a diamond simulant is synthetic moissanite (MOYSS-an-ite). This is a crystal form of silicon carbide. Gem quality moissanite entered the market in the 1990s. Experts have described it as closer to diamond in appearance than any other gem. However, moissanite is primarily marketed as a unique laboratory-created gemstone – not as a diamond simulant.
REPRESENTATION AND DISCLOSURE

For most consumers, the big questions about diamond treatments, synthetics, and simulants boil down to: “What am I really getting?” and “Is it really worth the price?”

With synthetic diamonds and simulants, the response is reasonably straightforward. For treated diamonds, the answer has several components.

Representing Synthetics and Simulants

FTC guidelines on representation of any gem or jewelry product are based on two simple principles:

- Clearly identify the product.
- Don’t say (or write) anything that might confuse or mislead a customer.

To follow these principles, remember that the term “diamond” by itself refers only to the natural gemstone. You need to clearly distinguish between diamond, synthetic diamond, and diamond simulant.

Instead of “synthetic,” you may use the terms “laboratory-created” or “laboratory-grown” to describe a synthetic diamond. You may also use “created” along with the manufacturer’s name.

You need to explain what any of these terms mean. Don’t assume that customers will understand what you’re talking about. For example, you might say, “This is a Pure Grown-created diamond. It’s like a natural diamond, but it was created in a laboratory under controlled conditions.”
Treatments, Synthetics, and Simulants

Be careful with the terms “real” and “genuine,” and others like them. They imply that the material is natural.

Also be careful about describing simulants. Do not call them “synthetic diamonds.” A synthetic has essentially the same composition, structure, and properties as its natural counterpart. Simulants don’t share these characteristics.

Acceptable alternative terms for diamond simulant are “diamond imitation,” “imitation diamond,” and “simulated diamond.” The FTC considers terms like “fashion diamond” and “faux diamond” misleading. (Faux is a French word that means imitation, false, or fake.)

Despite the fact that they’re used as diamond simulants, you need to identify synthetic sapphire and synthetic spinel as “synthetics.”

Most professionals feel that it’s okay to use the terms “cubic zirconia” and “moissanite” alone, even though they are technically synthetics. That’s because natural versions aren’t available on the market. It’s best to explain that they are laboratory-created gems, however.

FTC Guidelines

FTC guidelines are clear: Identify the product and don’t say - or write - anything that might mislead or confuse customers.

Disclosing Treatments

FTC guidelines say that diamond treatments must be disclosed if they’re not permanent, if they create special care requirements, or if they have a significant effect on value.

Full disclosure involves three separate questions. The first two are:

1) **What has been done to the diamond?** You can answer this with the information you’ve gained in this lesson, plus some research on the treated diamonds in your inventory.

2) **Is the treatment permanent, and is any special care required because of it?** Here are the specifics for this question:
• **Laser drilling and HPHT treatments** – Both are permanent and require no special care.

• **Irradiation** – Under normal conditions this is also permanent. Very high heat – for example, from a jeweler’s torch or a house fire – may affect it.

• **Fracture filling** – This can be damaged by high heat and certain cleaning methods.

For diamonds that have been treated by irradiation or fracture filling, you need to provide the following information on special care:

Caution customers not to use an ultrasonic cleaner on fracture filled diamonds. (In Lesson 15 you’ll learn more about ultrasonics and other methods for cleaning diamonds and diamond jewelry.)

Also tell customers to be sure to inform the take-in person of either treatment – irradiation or fracture filling – if they ever need to have a repair or some other service performed on the jewelry in which the diamond is set.

The third question in full disclosure of treatment is:

3) **How does the treatment affect value?** The most accurate way to answer this is to explain that the expense of the treatment process is added to the original price of the diamond. As a result, treated diamonds are worth more than they were before treatment, but they cost less than untreated diamonds of comparable appearance.

When you’re discussing diamond treatment, don’t become defensive if customers seem suspicious. Acknowledge their concern. Cite your company’s disclosure policy as a commitment to honesty and ethics. Explain the benefits of the process. Be sure to emphasize that the purpose of treatment is to improve the diamond’s appearance – not to deceive the purchaser.
Testing and Identification

Another question customers may have is: “How can I be sure of what I’m getting?” This gives you an opportunity to build trust by spotlighting the expertise that stands behind the products you sell.

Store Capabilities

You can tell customers that all synthetic diamonds and diamond simulants can be positively identified. Almost all treatments can be as well.

Members of your store’s professional team can probably make many of the determinations. A trade laboratory can make the rest.

Today many jewelry stores have an impressive array of gem-testing equipment. They also have owners, managers, buyers, or technical personnel who are fully qualified to use it.

Members of the sales team should be trained to identify simulants and certain treatments when taking in jewelry for repair, appraisal, or other services.

You need to learn your professional responsibilities in this important area. Even before you’re completely trained, you can arrange for your manager or a qualified coworker to demonstrate the equipment and procedures. This will give you insights into the detective work of gem identification. You can share these insights with customers.

Testing Methods and Procedures

The first step in testing for any transparent colorless (or near-colorless) gem is to determine whether or not it’s a diamond. This is also the place to begin if there’s reason to believe the gem may be a fancy color diamond. For this purpose, most jewelers use the devices known as diamond testers.

Standard diamond testers precisely measure a gem’s response to heat. They may misidentify moissanite as diamond, however. That’s because moissanite reacts the same way as diamond on standard testers.
Special testers are made to separate diamond and moissanite. These devices measure the gem’s electrical conductivity.

In order to avoid mistakes, it’s sometimes necessary to use both types. If a standard model indicates that a gem is diamond, a moissanite tester is used to make sure.

Magnification is another test that can help to identify diamond simulants. It’s useful with treated and synthetic diamonds, too.

Here are some examples:

- **Synthetic moissanite shows the optical effect known as doubling.** When you use a loupe or microscope and look through the gem’s crown at its pavilion, you see doubled images of the back facet junctions. This results from the way in which the moissanite crystal interacts with light. It doesn’t occur in diamonds. Once you’ve seen it, this is a quick and sure way to separate moissanite from diamond.

- **A fracture-filled diamond will often display the flash effect.** If you rock the diamond side-to-side as you examine it with a loupe or microscope, you see flashes of two different colors in a specific area. This is caused by light breaking up into spectral colors as it reflects from the boundary between the diamond and the filling. The colors are usually blue and orange or purple and green. (The lighting technique known as *darkfield illumination* is required to see the flash effect.)

- **Synthetic diamonds often have metallic inclusions that don’t resemble anything in natural diamonds.** The color of a synthetic diamond may also be distributed – or zoned – in an unusual or unnatural pattern.
A number of other instruments and tests are available in many stores. Together with diamond testers and magnification, they enable trained gemologists to identify all clarity treatments, some color treatments, most synthetic diamonds, and all simulants.

Trade laboratories can also make these identifications. In addition, they can use advanced tests to identify all synthetic diamonds and almost all color treatments.

Guaranteeing Confidence

Even with the best equipment and training, it can be impossible to determine for sure whether or not some diamonds are treated.

This is the case with green diamonds. It’s because the treatment duplicates nature’s own coloring process.

In this lesson you’ve learned that irradiation treatment can color diamonds green. However, in Lesson 4 you learned that many green diamonds are colored by natural radiation from the rocks in diamond deposits. Once a green diamond has left the lab or the mine and been cut, there’s often no way to tell for sure how it got its color.
A similar situation exists with a small percentage of HPHT treated diamonds. The treatment process comes very close to duplicating the conditions in which diamonds form deep inside Earth. As a result, it’s sometimes impossible to prove that a diamond is HPHT treated.

HPHT treatments work on only a small percentage of diamonds, however. Trade laboratories can also identify the vast majority of HPHT treated diamonds. So the “question marks” represent just a tiny fraction of a tiny fraction of all the diamonds on the market.

Of course, the diamond industry strives for 100% certainty. With this aim in mind, many firms that perform HPHT treatments also mark the diamonds they treat. Many synthetic diamond manufacturers do this with their products, too. The marks are produced by laser inscription. They’re usually placed on the girdle, and are visible only under high magnification.

It’s possible to remove an inscription by repolishing the diamond. This is considered fraudulent. If the diamond is later submitted to a trade laboratory for grading or testing, the inscription will probably be replaced. As a matter of policy, most trade labs now laser inscribe synthetic or HPHT treated diamonds. The treatment is also noted on quality reports.

Beyond these steps, advanced research laboratories around the world are constantly working to make identification surer and easier at every level of the market. The ultimate goal is to guarantee that diamonds can always be bought and sold with complete confidence.
PROBLEMS AND POTENTIALS

Treated diamonds, lab-created diamonds, and diamond simulants are most likely to cause problems for jewelry retailers when they’re misidentified. This can occur during take-in for repair, appraisal, or other services. There’s also the possibility that con artists will try to pull a switch during a sales presentation – especially for unset diamonds.

To avoid such losses, it’s essential to know and follow your company’s procedures for service take-in and merchandise presentation. As opportunities arise, learn to use the testing instruments and methods that are available to you.

On the sales floor, it’s important to remember that treatments increase the choices available to customers. They provide beautiful products with attractive price tags. The same is true of lab-created diamonds.

The obvious benefit of simulants is the “look” of diamond for a fraction of the cost. Diamond simulants are always in demand as fashion accessories. Style and cost options range from simple “costume” pieces to elegant karat-gold.

You might get occasional questions about ads boasting that a simulant is “better” than a diamond. To respond specifically, you have to analyze the claim carefully. You also need in-depth knowledge of both diamonds and the particular product. You can emphasize that no simulant has ever equaled diamond’s beauty and unique combination of features – much less its value, symbolism, and romance.
Remember that the impulse to purchase a simulant almost always comes from the desire to own a diamond. Effective handling of a simulant question might create a diamond sale, either immediately or sometime in the future.

Above all, treated diamonds, lab-created diamonds, and diamond simulants underscore some fundamental – and permanent – truths of the marketplace. Professionals need the knowledge, specialized resources, and operational procedures required to protect their customers and themselves. Consumers are always wise to do business with a firm they know and trust.

The impulse to purchase a simulant almost always comes from the desire to own a diamond.
FTC GUIDES: Treatments, Synthetics, and Simulants

Guidelines on treated diamonds, synthetic diamonds, and diamond simulants appear in the following sections:

§23.13 Disclosure of treatments to diamonds.
§23.22 Disclosure of treatments to gemstones.
§23.23 Misuse of the words “ruby,” “sapphire,” “emerald,” “topaz,” “stone,” “birthstone,” “gemstone,” etc.
§23.24 Misuse of the words “real,” “genuine,” “natural,” “precious,” etc.
§23.25 Misuse of the word “gem.”

The main points of these sections are covered in the lesson. You can find the full, official versions on the FTC website. Go to www.ftc.gov and search for “jewelry guides.”
Treatments, Synthetics, and Simulants

The Diamond Course 8
Diamond Council of America ©

RECAP OF KEY POINTS

• Treated diamonds, synthetic diamonds, and diamond simulants cause controversy and create challenges, but they have an important place in today’s jewelry industry.

• Treated diamonds are diamonds that formed naturally in the earth, but underwent a laboratory process to improve appearance. Synthetic diamonds are diamonds that were created in a laboratory or factory. Diamond simulants are not diamonds; they only look like diamonds.

• Diamond treatments can affect clarity or color. The treatments for clarity are laser drilling and fracture filling. The main ones for color are irradiation and high-pressure high-temperature (HPHT).

• Lab-created diamonds are now part of the jewelry market. Most are fancy color, but the availability of near colorless lab-created diamonds is increasing.

• Popular diamond simulants include glass, natural and synthetic colorless sapphire, synthetic spinel, and cubic zirconia. Synthetic moissanite could be considered a diamond simulant, but it’s primarily marketed as a unique lab-created gem.

• To follow FTC guidelines for representing lab-created diamonds and simulants, clearly identify your product and avoid misleading or confusing statements. Essential points in treatment disclosure are the nature and effects of the process, its permanence, and special care that’s required because of it. How treatment affects value is another customer concern.

• All clarity treatments, some color treatments, most lab-created diamonds, and all simulants can be identified with standard tests. In addition, advanced laboratory tests can identify all lab-created diamonds and almost all color treatments. With green diamonds and HPHT treated diamonds, treatment is sometimes impossible to prove.

• To avoid problems associated with treatments, lab-created diamonds, and simulants, know and follow company procedures for service take-in and merchandise presentation.

• For jewelry professionals, treatments, synthetics, and lab-created diamonds underscore the need for knowledge, resources, and effective procedures. For customers they reinforce the importance of doing business with an ethical and trusted firm.
LESSON 8 FOLLOW-UP CHECKLIST

____ If your store sells treated diamonds, lab-created diamonds, or diamond simulants, practice defining them. If you don’t carry these products, ask your manager to explain the company’s reasons for this merchandising decision. Learn how to respond to customers who might ask for them.

____ With a coworker, role-play disclosing any treatments that have been performed on diamonds in your inventory.

____ Role-play presenting lab-created diamonds or answering customer questions about them. (Whichever is appropriate for your store situation.)

____ Ask your store manager or a qualified coworker to demonstrate equipment and tests for identifying treatments, lab-created diamonds, and simulants. Practice describing the testing process in your own words.

____ If there are diamond testers in your store, learn to use them. Also practice explaining to customers how and why they’re used.

____ Talk to your manager about procedures for take-ins and presentations. Make sure you know what to do in any situation, and that you also understand how the procedures help you avoid problems with treatments, lab-created diamonds, and simulants.
Lesson 8 Self-Test

This lesson also includes a Self-Test that’s designed to help you gauge your comprehension of the lesson material. The test is an important part of the learning process, so be sure to complete it.

When you’re ready to take the test, go to the Course Materials page (the one that lists all the lessons) and click on “Self-Test.” Make certain you select the test for this lesson.

All questions in the test are based on Lesson 8. More than one answer for a question might seem correct, but you should select the one best answer based on the lesson discussion.

As you take the test, you may refer to the lesson. To do this, you’ll need to have the lesson loaded in a separate window of your browser.

If you feel certain about a question, try answering it without looking at the lesson. If you’re not sure, check the lesson before answering.

After you answer a question, you’ll receive immediate results and feedback. You’ll find out whether you answered correctly, what the correct answer was (in case you missed it), and also the page number in the lesson where the information can be found. Take time to review any material you’re not completely clear on.

At the end of the test, you’ll receive your overall results. Then you’ll be able to continue to the next step in your coursework.

If you have questions or need help, please contact us. You can use this website – just click on “Help.” You can also email studenthelp@diamondcouncil.org or phone 615-385-5301 / toll free 877-283-5669.

After you take the Self-Test for this lesson, you will be ready to complete Progress Evaluation 2. This has three parts – a Learning Evaluation, a Training Evaluation, and a Satisfaction Evaluation. Detailed instructions for Learning Evaluations are in the Testing Center section of this website. Instructions for Training and Satisfaction Evaluations are in the Evaluations section.